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Abstract. In this paper we propose a theoretical scheme to show the possibility of generating various
families of nonlinear (f -deformed) coherent states of the radiation field in a micromaser. We show that
these states can be provided in a lossless micromaser cavity under the weak Jaynes-Cummings interaction
with intensity–dependent coupling of large number of individually injected two-level atoms in a coherent
superposition of the upper and lower states. In particular, we show that the so-called nonlinear squeezed
vacuum and nonlinear squeezed first excited states, as well as the even and odd nonlinear coherent states
can be generated in a two-photon micromaser.

PACS. 42.50.Pq Cavity quantum electrodynamics; micromasers – 42.50.Dv Nonclassical states of the
electromagnetic field, including entangled photon states; quantum state engineering and measurements

1 Introduction

The importance of coherent states (CSs) of various Lie
algebras in different branches of physics, particularly in
quantum optics, hardly needs to be emphasized. Histori-
cally, the conventional CSs of the quantum harmonic oscil-
lator corresponding to the Heisenberg-Weyl algebra were
first introduced by Schrödinger [1], who referred to them
as states of minimum uncertainty product. The recogni-
tion that CSs are particularly important and appropri-
ate for the quantum treatment of optical coherence and
their adoption in quantum optics are due largely to the
work of Glauber [2]. These states have quantum statistical
properties like the classical radiation field and they define
the limit between the classical and non-classical behaviors,
like squeezing, antibunching and sub-Poissonian statistics.
Subsequently the notion was generalized in various ways.
Motivations to generalize the concept have arisen from
symmetry considerations [3,4], dynamics [5] and algebraic
aspects [6].

Recently a generalized class of the conventional CSs
called the nonlinear coherent states (NLCSs) [7] or the f -
CSs [8], which can be classified as an algebraic generaliza-
tion of the conventional CSs, have been constructed. These
states, which correspond to nonlinear algebras rather than
Lie algebras, are defined as right eigenstates of the gener-
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alized annihilation operator Â = âf(N̂),

Â |z〉f = z |z〉f , (1)

where f(N̂) is a reasonably well-behaved real function of
the number operator N̂ = â+â and z is an arbitrary com-
plex number. From (1) one can obtain an explicit form of
the NLCSs in a number state representation

|z〉f = C

∞∑

n=0

zndn |n〉 , (2)

where the coefficients dn’s and normalization constant C,
respectively, are given by

d0 = 1, dn =
(√

n!f(n)!
)−1

, f(n)! ≡
n∏

j=1

f(j) (3)

C =

( ∞∑

n=0

d2
n|z|2n

)−1/2

. (4)

Actually, NLCSs have been known for many years un-
der other names. The phase state [9] or its generaliza-
tion [10] (known nowadays as the negative binomial state
or the SU (1,1) group coherent states) and the photon-
added CS [11] are two well-known examples of NLCSs. The
physical meaning of NLCSs has been elucidated in [7,8],



398 The European Physical Journal D

where it has been shown that such states may appear as
stationary states of the center-of-mass motion of a trapped
ion [7], or may be related to some nonlinear processes
(such as a hypothetical “frequency blue shift” in high in-
tensity photon beams [8]). Furthermore, it has been shown
that NLCSs exhibit various non-classical features such as
quadrature squeezing, number-phase squeezing and sub-
Poissonian photon statistics [12].

On the other hand, in last few years the production
and detection of non-classical states of the radiation field
have attracted a great deal of attention because of their
latent applications in optical communication and in pre-
cise and sensitive measurements. One of the marvelous ex-
perimental and theoretical systems which can be utilized
to produce non-classical radiation is the one–atom maser
or micromaser [13]. The system consists of a high-Q mi-
crowave cavity and a stream of injected Rydberg atoms
which drive the field inside the cavity. The atomic beam
is sufficiently sparse so that no more than one atom is
in the cavity at any time. There are several schemes that
have been proposed to produce number states [14], sub-
Poissonian states [15], squeezed states [16] and trapping
states [17] and the possibility of generating pure states of
the field, the so-called tangent and cotangent states [18]
has also been predicted by using micromasers.

Although foregoing schemes have been discussed by
utilizing the standard Jaynes-Cummings model [19], one
may consider the generalized multi-photon intensity-
dependent Jaynes-Cummings model (IDJC). The multi-
photon IDJC model is a quantum model describing the
interaction of a monochromatic electromagnetic field with
one two-level atom in a cavity under intensity-dependent
coupling through multi-photon transitions. The interac-
tion Hamiltonian of this model can be expressed in the
rotating-wave approximation and in the interaction pic-
ture as following (� = 1)

Ĥ
(m)
ID = g

(
âmf(N̂) |a〉 〈b| + |b〉 〈a| f(N̂)(â+)m

)
;

(m = 1, 2, ...). (5)

Here, â and â+ are the usual operators of the
Heisenberg-Weyl algebra, [â, â+] = 1, |a〉, |b〉 are the ex-
cited and ground atomic states, respectively and g is the
coupling constant. The function f(N̂), which is assumed
to be real, describes the intensity dependence of atom-
field interaction. Some particular forms of IDJC have been
studied in literature. For example, the model equation (5)
with f(N̂) =

√
N̂ and m = 1 was first introduced in [20]

and later analyzed in [21]. In particular, this type of IDJC
model is interesting because of its inherent connection to
an SU(1,1) Jaynes-Cummings model. A q-boson general-
ization of this model was introduced in [22].

Admittedly the intensity-dependent coupling between
the field and the atom requires further justification. In
this respect it is worth mentioning that such a justifi-
cation is required for any quantum-optical model based

on the two-level approximation. The Hamiltonian describ-
ing the interaction of the two-level system with the quan-
tized field mode should be understood as “effective”. This
means that only two atomic levels are effectively singled
out from the energy spectrum. This operator includes two
field operators related to the ground and excited states
in question as well as operator multiplier related to the
dipole transition. These operators are expressed in terms
of the Bose operators of the quantized field mode in a very
complicated way. They should account for various Stark
shifts of the quantum levels as well as for the dependence
of the dipole moment of the quantum transition on the
state of the exciting field. It is possible in principle to ex-
plain how to construct these effective operators for any
atomic Hamiltonian and for any pair of quantum levels
using Kato’s transformation operator (cf. [23]) and the
secular operator of degenerate perturbation theory. It is
also worth mentioning that generalized Jaynes-Cummings
models have recently become the subject of intense atten-
tion [24–30]. These considerations support the theoretical
interest in the IDJC model since this kind of interaction
means effectively that the coupling constant is propor-
tional to the intensity of the cavity field which represents
a very simple case of a nonlinear interaction correspond-
ing to a more realistic physical situation. Moreover, it can
potentially provide various variants of the field state pos-
sessing interesting quantum statistical features. In other
words, the model equation (5) may be considered as a
useful theoretical laboratory in which time evolution of a
variety of initial states of the system can be analyzed.

On the other hand, experiments of increasing diffi-
culty in cavity quantum electrodynamics over the last
years have made it possible to test fundamental radiation–
matter interaction models involving single atoms [31].
Such a stimulating situation essentially stems from two
decisive advancements. The first is the invention of reli-
able protocols for the manipulation of single atoms. The
second is the ability to produce desired bosonic environ-
ments on demand. This progress has led to the possibility
of controlling the form of the coupling between individ-
ual atoms and an arbitrary number of bosonic modes. As
a consequence, fundamental matter–radiation interaction
models such as the Jaynes-Cummings model and most of
its numerous nonlinear generalizations, have been realized
or simulated in the laboratory and their dynamical fea-
tures have been tested more or less in detail.

In the present contribution, we aim at exploring the
possibility of generating various families of NLCSs in a
micromaser under IDJC model described by the model
equation (5). We find that they occur under the condi-
tions that cavity losses are negligible (a possible situation
in the micromaser experiments [13]) and the injected two-
level atoms are prepared in a coherent superposition of
the upper and lower states. By considering the weak in-
teraction of large number of individual atoms with the
cavity-field through one as well as two-photon transitions
we investigate the quantum evolution of the cavity-field
state. In the next section we are dealing with the case of
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one-photon transitions and Section 3 is devoted to the case
of two-photon transitions. The results are summarized in
Section 4.

2 Quantum evolution of the cavity-field state:
one-photon transitions

We consider a beam of monoenergetic two-level atoms in-
jected at regular time intervals into a lossless microwave
cavity in which the atoms interact resonantly with the
cavity mode for a finite time τ . The micromaser is usually
operated in the regime in which there is at most only one
atom in the cavity at any time. It is assumed that the
time of the interaction of each atom with the cavity-field
is much shorter than the lifetime of all the atomic levels.
Then the atomic spontaneous decay processes to other
levels can be ignored while an atom is inside the cavity,
which means that the joint evolution of the cavity-field
and atoms is unitary.

We assume that injected atoms interact with the
cavity-field through one-photon transitions and intensity-
dependent coupling. The Hamiltonian describing the
atom-field interaction is given by model equation (5) with
m = 1 that may be written as

Ĥ
(m=1)
ID = g

(
Â |a〉 〈b| + |b〉 〈a| Â+

)
, (6)

in which

Â = âf(N̂), Â+ = f(N̂)â+. (7)

It is assumed that the real function f(N̂)is such that it
has no zeros at positive integer values of n, including zero.
From the relations (7) it follows that Â, Â+ and the num-
ber operator N̂ satisfy the following closed algebraic rela-
tions

[Â, Â+] = {N̂ + 1}f − {N̂}f ,

[N̂ , Â] = −Â, [N̂ , Â+] = Â+, (8a)

together with

Â |n〉 =
√
{n}f |n− 1〉 ,

Â+ |n〉 =
√
{n+ 1}f |n+ 1〉 , N̂ |n〉 = n |n〉 , (8b)

where the symbol {X}f stands forXf2(X). Thus the rela-
tions (8a) represent a deformed Heisenberg algebra whose
nature of deformation depends on the nonlinearity func-
tion f(N̂). Clearly for f(N̂) =1 we regain the Heisenberg
algebra.

It is easy to show that the corresponding time evolu-
tion operator Û(τ) can be expressed in the form

Û(τ) ≡ exp(−iĤ(m=1)
ID τ) = cos

(
gτ

√
{N̂ + 1}f

)
|a〉 〈a|

+ cos
(
gτ

√
{N̂}

f

)
|b〉 〈b|

−i
sin
(
gτ
√
{N̂ + 1}f

)

√
{N̂ + 1}

f

Â |a〉 〈b|

−i
sin
(
gτ
√
{N̂}f

)

√
{N̂}f

Â+ |b〉 〈a|.

(9)

Let all atoms are initially prepared in a same superposition
of the upper level |a〉 and the lower level |b〉. Therefore the
initial density matrix of the Kth atom can be written as

ρ̂
(K)
A (t = 0) =

∑

i,j=a,b

ρij |iK〉 〈jK | , (10)

where ρii ≥ 0, ρaa + ρbb = 1, ρab = ρ∗ba = |ρab| exp(iϕ),
|ρab| = |ρba| ≡ √

ρaaρbb.
It should be noted that there is a free evolution of the

cavity-field density matrix in the time between the subse-
quent atoms entering the cavity, i.e., the matrix elements
of the cavity-field density matrix acquire an extra phase
factor exp(i(n− n′)ωδt), where ω is the cavity resonance
frequency and δt is the time between the arrivals of sub-
sequent atoms. We assume here that the time δt is chosen
in such a way that ωδt is equal to a multiple of 2π. In
this case the extra phase factor due to the free evolution
is unity. Otherwise we should take it into account in the
overall density matrix evolution. If the atoms were arriv-
ing at random times they would meet the cavity-field with
random phases, and the cavity-field phase, which is associ-
ated with the non-diagonal elements of the density matrix,
would necessarily become random (only diagonal elements
would survive). This assumption is a very serious restric-
tion to the model considered here. It means that atoms
should be injected into the cavity in a well controllable
way.

Assuming that it is possible, the field density matrix,
after passing K atoms through the micromaser cavity
reads as

ρ̂
(K)
F = TrA

(
ÛK(τ)ρ̂(K)

A ⊗ ρ̂
(K−1)
F Û+

K(τ)
)
, (11)

in which TrA indicates partial trace over the Hilbert space
of the two-level atom. Here, the number of injected atoms
K is considered as a scaled evolution time of the sys-
tem. By using (11) together with the expressions (9) and
(10), we can easily get for the cavity-field density matrix
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elements the recursion relation

ρ
(K)
F (n, n′) = 〈n| ρ̂(K)

F |n′〉 =
(
ρaa cos

(
gτ
√
{n+ 1}f

)
cos
(
gτ
√
{n′ + 1}f

)

+ ρbb cos
(
gτ
√
{n}f

)
cos
(
gτ
√
{n′}f

))
ρ
(K−1)
F (n, n′)

+ ρbb sin
(
gτ
√

{n+ 1}f

)
sin
(
gτ
√

{n′ + 1}f

)

× ρ
(K−1)
F (n+ 1, n′ + 1)

+ ρaa sin
(
gτ
√
{n}f

)
sin
(
gτ
√
{n′}f

)

× ρ
(K−1)
F (n− 1, n′ − 1)

+ i|ρab| exp(iϕ) cos
(
gτ
√

{n+ 1}f

)

× sin
(
gτ
√
{n′ + 1}f

)
ρ
(K−1)
F (n, n′ + 1)

+ i|ρab| exp(−iϕ) cos
(
gτ
√
{n}f

)
sin
(
gτ
√
{n′}f

)

× ρ
(K−1)
F (n, n′ − 1)

− i|ρab| exp(−iϕ) sin
(
gτ
√
{n+ 1}f

)

× cos
(
gτ
√

{n′ + 1}f

)
ρ
(K−1)
F (n+ 1, n′)

− i|ρab| exp(iϕ) sin
(
gτ
√
{n}f

)
cos
(
gτ
√

{n′}f

)

× ρ
(K−1)
F (n− 1, n′), (12)

with the initial condition ρ
(K=0)
F (n, n′) = ρ

(0)
F (n, n′). It is

seen from the recursion relation (12) that the coupling be-
tween the diagonal matrix elements ρ(K)

F (n, n) and the off-
diagonal elements ρ(K)

F (n, n± 1) = ρ
(K)∗

F (n± 1, n) occurs
only when the atomic coherence ρab is present. If the mi-
cromaser is pumped by unpolarized atoms (ρab = 0) then
the off-diagonal elements don’t occur, and consequently
the field phase is always random. However, atoms pre-
pared in a coherent superposition of their states before
entering the micromaser cavity create nonvanishing off-
diagonal elements, that is they create a preferred phase
field [14,32].

In order to solve the recursion relation (12) we adopt
a method which has firstly been used by Kien et al. [33].
We introduce the phase-independent matrix elements
ρ̃(K)(n, n′) through the definition

ρ
(K)
F (n, n′) = (i exp(−iϕ))n′−n

(
n∏

�=1

sin
(
gτ
√

{�}f

)

×
n′∏

�′=1

sin
(
gτ
√

{�′}f

))
ρ(n+n′)/2

aa ρ̃(K)(n, n′). (13)

Substituting this expression into (12), we get the recursion
relation

ρ̃(K)(n, n′) =
(
ρaa cos

(
gτ
√
{n+ 1}f

)
cos
(
gτ
√
{n′ + 1}f

)

+ ρbb cos
(
gτ
√
{n}f

)
cos
(
gτ
√
{n′}f

))
ρ̃(K−1)(n, n′)

+ ρaaρbb sin2

(
gτ
√
{n+ 1}f

)
sin2

(
gτ
√
{n′ + 1}f

)

× ρ̃(K−1)(n+ 1, n′ + 1) + ρ̃(K−1)(n− 1, n′ − 1)

− ρaa
√
ρbb cos

(
gτ
√
{n+ 1}f

)
sin2

(
gτ
√
{n′ + 1}f

)

× ρ̃(K−1)(n, n′ + 1)

− ρaa
√
ρbb sin2

(
gτ
√
{n+ 1}f

)
cos
(
gτ
√
{n′ + 1}f

)

× ρ̃(K−1)(n+ 1, n′)

+
√
ρbb cos

(
gτ
√
{n}f

)
ρ̃(K−1)(n, n′ − 1)

+
√
ρbb cos

(
gτ
√
{n′}f

)
ρ̃(K−1)(n− 1, n′), (14)

with the initial condition

ρ̃(0)(n, n′) = (i exp(−iϕ))n−n′
(

n∏

�=1

sin
(
gτ
√

{�}f

)

×
n′∏

�′=1

sin
(
gτ
√
{�′}f

))−1

ρ−(n+n′)/2
aa ρ

(0)
F (n, n′). (15)

Now we consider the case of weak atom-field interaction,
that is,

gτ � 1, gτ
√

{〈n〉}f ≡ gτ
√
〈n〉f2(〈n〉) � 1, (16)

where 〈n〉 is the mean photon number of the cavity-field.
In the first-order approximation that is,

sin
(
gτ
√
{n}f

)
≈ gτ

√
{n}f ,

sin2

(
gτ
√
{n}f

)
≈ 0, cos

(
gτ
√
{n}f

)
≈ 1

the recursion relation (14) becomes

ρ̃(K)(n, n′) ≈ ρ̃(K−1)(n, n′) + ρ̃(K−1)(n− 1, n′ − 1)

+
√
ρbb

(
ρ̃(K−1)(n, n′ − 1) + ρ̃(K−1)(n− 1, n′)

)
. (17)

The solution of equation (17) is easily found to be

ρ̃(K)(n, n′) ≈
K∑

k,k′=0

min(k,k′)∑

p=0

K!ρ(k+k′−2p)/2
bb

p!(k − p)!(k′ − p)!(K − k − k′ + p)!

× ρ̃(0)(n− k, n′ − k′). (18)
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Since the expression (18) is not very convenient to be used
for large K, we prefer to use the truncated form

ρ̃(K)(n, n′) ≈
n∑

k=0

n′∑

k′=0

min(k,k′)∑

p=0

K!ρ(k+k′−2p)/2
bb

p!(k − p)!(k′ − p)!(K − k − k′ + p)!

× ρ̃(0)(n− k, n′ − k′). (19)

Substituting equation (19) into equation (13), we obtain
for ρ(K)

F (n, n′) the approximate expression

ρ
(K)
F (n, n′)≈(i exp(−iϕ))n′−n(gτ

√
ρaa)n+n′

√
{n}f !{n′}f !

×
n∑

k=0

n′∑

k′=0

min(k,k′)∑

p=0

K!ρ(k+k′−2p)/2
bb

p!(k − p)!(k′ − p)!(K − k − k′ + p)!

× ρ̃(0)(n− k, n′ − k′), (20)

where by definition {n}f ! = {n}f{n−1}f{n−2}f ...1 and
{0}f ! = 1. Now let ρbb 	= 0 and K 
 1. The relation
between (p + 1)th and pth terms in the sum on the r.h.s
of expression (19) is

(k − p)(k′ − p)
ρbb(p+ 1)(K − k − k′ + 1)

≤ kk′

ρbb(K − k − k′)
. (21)

As it is seen, in the region of values of n and n′ such that
n+ n′ + nn′/ρbb � K the term with p = 0 in the sum on
the r.h.s of (19) dominates. Keeping only the p = 0 term
and using the approximation K!/(K− k− k′)! ≈ K(k+k′),
from expression (20) we find

ρ
(K)
F (n, n′) ≈

√
{n}f !{n′}f !

n∑

k=0

n′∑

k′=0

(i exp(−iϕ))k′−k

× (Kgτ
√
ρaaρbb)k+k′

k!k′!
√{n− k}f !{n′ − k′}f !

ρ
(0)
F (n− k, n′ − k′), (22)

in which we have made use of (15). The expression (22)
gives the matrix elements of the cavity-field density matrix
after passing a large number of injected atoms through
the micromaser cavity where each atom undergoes one-
photon transitions under the weak atom-field interac-
tion with intensity-dependent coupling. If the micromaser
starts from a pure state |ψ(0)

F 〉, then the cavity-field evolves
into the pure state |ψ(K)

F 〉 as follows

〈
n
∣∣∣ ψ(K)

F

〉
≈

n∑

k=0

zk

k!
√{n− k}f !

√
{n}f !

〈
n− k

∣∣∣ ψ(0)
F

〉

(23)
with z = −i exp(−iϕ)Kgτ

√
ρaaρbb.

Now let us assume that the cavity-field is initially in
the vacuum state, i.e., |ψ(0)

F 〉 = |0〉. Thus from (23) we find

the following approximate expression for the normalized
cavity-field state after passing K atoms (K 
 1)

∣∣∣ψ(K)
F

〉
≡ |z〉′f = C′

∞∑

n=0

zn

n!

√
{n}f ! |n〉 = C′

∞∑

n=0

znd′n |n〉 ,
(24)

where

d′0 = 1, d′n =
(√

n!
/
f(n)!

)−1

, (25a)

and C′ is the normalization constant given by

C′ =

( ∞∑

n=0

d′2n|z|2n

)−1/2

. (25b)

It is evident that for f(n) = 1 the state vector (24) de-
scribes the usual CS. Therefore it is reasonable to inter-
pret the state (24) as a NLCS of the cavity-field. But, since
the expansion coefficients d′n are different from the coef-
ficients dn, given by (3) (provided of course we use the
same nonlinearity function f(n) in both the cases) the
NLCS obtained in (24) is distinct from the NLCS defined
in equation (2).

In order to get more clear insight to the above result we
present the following argument. From the relation (8a) we
find that the r.h.s of the commutator [Â, Â+] is a nonlin-
ear function of the number operator N̂ . As a result BCH
disentangling theorem [34] can not be applied and one
can not use the displacement operator exp(zÂ− z∗Â+) to
construct coherent states. Therefore one may seek for an
operator B̂+ which is conjugate of the operator Â, that is
[Â, B̂+] = 1 while their Hermitian conjugates Â+ and B̂

satisfy the dual algebra [B̂, Â+] = 1. From (7) it is easily
found that

B̂ = â
1

f(N̂)
, B̂+ =

1
f(N̂)

â+. (26)

Let us now consider the following displacement operators

D̂f (z) = exp(zB̂+ − z∗Â), D̂′
f (z) = exp(zÂ+ − z∗B̂)

(27)
and note that for any two operators X̂ and Ŷ satisfying
the relation [X̂, Ŷ ] = 1 the BCH theorem results in

exp(zX̂ − z∗Ŷ ) = exp(−|z|2/2) exp(zX̂) exp(−z∗Ŷ ).
(28)

Now it is easy to find that the NLCSs (2) can be defined
as |z〉f = D̂f (z) |0〉, corresponding to the dual algebra
[B̂, Â+] = 1 while the NLCSs given by (24) can be de-
fined as |z〉′f = D̂′

f (z) |0〉, corresponding to the algebra
[Â, B̂+] = 1. In addition, we have

Â |z〉f = âf(N̂) |z〉f = z |z〉f ,
B̂ |z〉′f = â

1
f(N̂)

|z〉′f = z |z〉′f . (29)
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In this manner, we conclude that the intensity-dependent
Jaynes-Cummings Hamiltonian (6), under the conditions
of weak atom-field interaction and the passage of large
number of polarized atoms through the cavity initially
prepared in vacuum state, results in the NLCS (24) which
is the eigenstate of the deformed annihilation operator
B̂. While if one considers the intensity-dependent interac-
tion Hamiltonian as Ĥ(m=1)

ID = g(B̂|a〉〈b| + |b〉〈a|B̂+) then
under the same conditions the cavity-field evolves to the
NLCS (2) which is the eigenstate of the operator Â.

It is to be noted that the normalizability of the states
|z〉f and |z〉′f depends crucially on the convergence of the
series which define the normalization constants C and C′.
This means that the normalization constants should be
nonzero and finite. This condition results in the following
restrictions for the values of |z|2 = (Kgτ)2ρaaρbb for the
states |z〉f and |z〉′f respectively,

|z|2 < lim
m→∞(m+ 1)f2(m+ 1), (30a)

|z|2 < lim
m→∞

(m+ 1)
f2(m+ 1)

. (30b)

It is evident that if f(m) increases (decreases) faster than
m(m−1) for large m, then in the case of |z〉f (|z〉′f ) the
range of |z|2 is unrestricted.

The mean number of photons 〈n〉 and the Mandel pa-
rameter Q, which measures the deviation from Poissonian
statistics (Q = 0), for these two states are respectively
given by

〈n〉|z〉f
= |z|2

∂

∂|z|2C
−2

C−2
, 〈n〉|z〉′f = |z|2

∂

∂|z|2C
′−2

C′−2
,

(31a)

Q|z〉f
=

|z|2
〈n〉|z〉f

∂〈n〉|z〉f

∂|z|2 − 1,

Q|z〉′f =
|z|2

〈n〉|z〉′f
∂〈n〉|z〉′f
∂|z|2 − 1. (31b)

In Figure 1 we plot the photon-number distribution for
the state |z〉f with gτ = 10−3, K = 104, ρaa = ρbb = 0.5
and for three different cases f(n) = 1 (linear micromaser),
f(n) =

√
n+ 1, f(n) = n + 1. Using (31a) and (31b) we

also find that

〈n〉|z〉f=1
= |z|2 = 25; Q|z〉f=1

= 0

(Poissonian statistics),

〈n〉|z〉f=
√

n+1
= 4.270; Q|z〉f=

√
n+1

= −0.417

(sub-Poissonian statistics),

〈n〉|z〉f=n+1
= 2.281; Q|z〉f=n+1

= −0.576

(sub-Poissonian statistics).

Fig. 1. Photon number distribution for the state |z〉f with

gτ = 10−3, K = 104, ρaa = ρbb = 0.5 and for three different
cases f(n) = 1 ( ) f(n) =

√
n + 1 ( ) and f(n) =

n + 1 ( ).

3 Quantum evolution of the cavity-field state:
two-photon transitions

So far, we have discussed the possibility of the generation
NLCSs in a micromaser in which the injected atoms inter-
act with the cavity–field through one-photon transitions.
Now we are intended to examine the problem for the case
of two-photon transitions. The two-photon transitions are
results of nonlinear atom-field interaction and are the
higher order processes. Therefore, the probability of such
transitions is extremely small when compared to the prob-
ability of one-photon transitions. Moreover, the higher or-
der processes require longer atom-field interaction time
since the atom-field coupling is drastically reduced and as
a consequence the decoherence can occur during the inter-
action. Nevertheless, two-photon micromasers were both
theoretically [35] and experimentally [36] studied.

The interaction Hamiltonian is given by model equa-
tion (5) with m = 2 that may be written as

Ĥ
(m=2)
ID = g

(
Ĉ |a〉 〈b| + |b〉 〈a| Ĉ+

)
, (32)

where
Ĉ = â2f(N̂), Ĉ+ = f(N̂)(â+)2. (33)

The operators Ĉ, Ĉ+ and N̂ satisfy the following closed
algebraic relations

[Ĉ, Ĉ+] = [N̂ + 2]f − [N̂ ]f ,

[N̂ , Ĉ] = −2Ĉ, [N̂, Ĉ+] = 2Ĉ+, (34a)

together with

Â |n〉 =
√

[n]f |n− 2〉 , Â+ |n〉 =
√

[n+ 2]f |n+ 2〉 ,
(34b)

in which the symbol [X ]f stands for X(X − 1)f2(X). It
should be noted that the deformed operator Ĉ annihilates
both the vacuum state |0〉 and first excited state |1〉.

In this case we obtain the following recursion relation
for the cavity-field density matrix elements after passing
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K polarized atoms through the micromaser cavity

ρ
(K)
F (n, n′) = 〈n| ρ̂(K)

F |n′〉 =
(
ρaa cos

(
gτ
√

[n+ 2]f

)
cos
(
gτ
√

[n′ + 2]f

)

+ ρbb cos
(
gτ
√

[n]f

)
cos
(
gτ
√

[n′]f

))
ρ
(K−1)
F (n, n′)

+ ρbb sin
(
gτ
√

[n+ 2]f

)
sin
(
gτ
√

[n′ + 2]f

)

× ρ
(K−1)
F (n+ 2, n′ + 2)

+ ρaa sin
(
gτ
√

[n]f

)
sin
(
gτ
√

[n′]f

)

× ρ
(K−1)
F (n− 2, n′ − 2)

+ i|ρab| exp(iϕ) cos
(
gτ
√

[n+ 2]f

)
sin
(
gτ
√

[n′ + 2]f
)

× ρ
(K−1)
F (n, n′ + 2)

+ i|ρab| exp(−iϕ) cos
(
gτ
√

[n]f

)
sin
(
gτ
√

[n′]f

)

× ρ
(K−1)
F (n, n′ − 2)

− i|ρab| exp(−iϕ) sin
(
gτ
√

[n+ 2]f

)
cos
(
gτ
√

[n′ + 2]f

)

× ρ
(K−1)
F (n+ 2, n′)

− i|ρab| exp(iϕ) sin
(
gτ
√

[n]f

)
cos
(
gτ
√

[n′]f

)

× ρ
(K−1)
F (n− 2, n′). (35)

To solve the above equation we employ the same method
as in previous section. A moment’s inspection of the equa-
tion (35) shows that it is convenient to propose the phase-
independent matrix elements ρ̃(K)(n, n′) through the def-
initions

ρ
(K)
F (n, n′) = (i exp(−iϕ))(n

′−n)/2

(
n/2∏

�=1

sin
(
gτ
√

[2�]f

)

×
n′/2∏

�′=1

sin
(
gτ
√

[2�′]f

))
ρ(n+n′)/4

aa ρ̃(K)(n, n′) (36a)

for even n, n′,

ρ
(K)
F (n, n′) = (i exp(−iϕ))(n

′−n)/2

×



(n−1)/2∏

�=1

sin
(
gτ
√

[2�+ 1]f

)

×
(n′−1)/2∏

�′=1

sin
(
gτ
√

[2�′ + 1]f

)



× ρ(n+n′)/4
aa ρ̃(K)(n, n′) (36b)

for odd n, n′,

ρ
(K)
F (n, n′) = (i exp(−iϕ))(n

′−n)/2

(
n/2∏

�=1

sin
(
gτ
√

[2�]f

)

×
(n′−1)/2∏

�′=1

sin
(
gτ
√

[2�′ + 1]f

))
ρ(n+n′)/4

aa ρ̃(K)(n, n′),

(36c)

for even n and odd n′ and

ρ
(K)
F (n, n′) = (i exp(−iϕ))(n

′−n)/2

×
(

(n−1)/2∏

�=1

sin
(
gτ
√

[2�+ 1]f

) n′/2∏

�′=1

sin
(
gτ
√

[2�′]f

))

× ρ(n+n′)/4
aa ρ̃(K)(n, n′), (36d)

for odd n and even n′. By substituting the expressions
(36) in (35) we find the following recursion relation for the
matrix elements ρ̃(K)(n, n′) which is valid for all values of
n and n′

ρ̃(K)(n, n′) =

(
ρaa cos

(
gτ
√

[n+ 2]f

)
cos
(
gτ
√

[n′ + 2]f

)

+ ρbb cos
(
gτ
√

[n]f

)
cos
(
gτ
√

[n′]f

))
ρ̃(K−1)(n, n′)

+ ρaaρbb sin2

(
gτ
√

[n+ 2]f

)
sin2

(
gτ
√

[n′ + 2]f

)

× ρ̃(K−1)(n+ 2, n′ + 2) + ρ̃(K−1)(n− 2, n′ − 2)

− ρaa
√
ρbb cos

(
gτ
√

[n+ 2]f

)
sin2

(
gτ
√

[n′ + 2]f
)

× ρ̃(K−1)(n, n′ + 2)

− ρaa
√
ρbb sin2

(
gτ
√

[n+ 2]f

)
cos
(
gτ
√

[n′ + 2]f
)

× ρ̃(K−1)(n+ 2, n′)

+
√
ρbb cos

(
gτ
√

[n]f

)
ρ̃(K−1)(n, n′ − 2)

+
√
ρbb cos

(
gτ
√

[n′]f

)
ρ̃(K−1)(n− 2, n′), (37)

with the initial conditions

ρ̃(0)(n, n′) = (i exp(−iϕ))(n−n′)/2

(
n/2∏

�=1

sin
(
gτ
√

[2�]f

)

×
n′/2∏

�′=1

sin
(
gτ
√

[2�′]f

))−1

ρ−(n+n′)/4
aa ρ

(0)
F (n, n′) (38a)
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for even n, n′,

ρ̃(0)(n, n′) = (i exp(−iϕ))(n−n′)/2

×
(

(n−1)/2∏

�=1

sin
(
gτ
√

[2�+ 1]f

)

×
(n′−1)/2∏

�′=1

sin
(
gτ
√

[2�′ + 1]f

))−1

× ρ−(n+n′)/4
aa ρ

(0)
F (n, n′) (38b)

for odd n, n′,

ρ̃(0)(n, n′) = (i exp(−iϕ))(n−n′)/2

(
n/2∏

�=1

sin
(
gτ
√

[2�]f

)

×
(n′−1)/2∏

�′=1

sin
(
gτ
√

[2�′ + 1]f

))−1

ρ−(n+n′)/4
aa ρ

(0)
F (n, n′)

(38c)

for even n and odd n′ and

ρ̃(0)(n, n′) =

(i exp(−iϕ))(n−n′)/2

(
(n−1)/2∏

�=1

sin
(
gτ
√

[2�+ 1]f

)

×
n′/2∏

�′=1

sin(gτ
√

[2�′]f )

)−1

ρ−(n+n′)/4
aa ρ

(0)
F (n, n′). (38d)

for odd n and even n′.
Now, as before, we consider the case of weak atom-field

interaction, that is,

gτ � 1, gτ
√

[〈n〉]f ≡ gτ
√
〈n〉(〈n〉 − 1)f2(〈n〉) � 1.

(39)
In the first-order approximation the recursion relation (37)
becomes

ρ̃(K)(n, n′) ≈ ρ̃(K−1)(n, n′) + ρ̃(K−1)(n− 2, n′ − 2)

+
√
ρbb

(
ρ̃(K−1)(n, n′ − 2) + ρ̃(K−1)(n− 2, n′)

)
(40)

whose solution reads as

ρ̃(K)(n, n′) ≈
K∑

k,k′=0

min(k,k′)∑

p=0

K!ρ(k+k′−2p)/2
bb

p!(k − p)!(k′ − p)!(K − k − k′ + p)!

× ρ̃(0)(n− 2k, n′ − 2k′). (41)

Following the same lines as those of the previous section
we find that the micromaser field, initially prepared in
a pure state |ψ(0)

F 〉, evolves into the pure state |ψ(K)
F 〉 as

follows
〈
n
∣∣∣ ψ(K)

F

〉
=

n∑

k=0

zk

k!
√

[n− 2k]f !!

√
[n]f !!

〈
n− 2k

∣∣∣ ψ(0)
F

〉
,

(42)

where z = −i exp(−iϕ)Kgτ
√
ρaaρbb and by definition

[n]f !! = [2]f [4]f [6]f ...[n− 2]f [n]f ,
for n = 2k (k = 0, 1, 2, ...),

[n]f !! = [3]f [5]f [7]f ...[n− 2]f [n]f ,
for n = 2k + 1 (k = 0, 1, 2, ...), (43)

and [0]f !! = [1]f !! = 1.
Now let us assume that the cavity-field is initially in

the vacuum state, i.e., |ψ(0)
F 〉 = |0〉. Thus from (42) we find

the following approximate expression for the normalized
cavity-field state after passing K atoms (K 
 1)

∣∣∣ψ(K)
F

〉
≡ |z, 0〉f = C0

∞∑

n=0

zn

n!

√
(2n)!f(2n)!! |2n〉 , (44a)

where by definition f(2n)!! = f(2)f(4). . . f(2n− 2)f(2n)
and C0 is the normalization constant given by

C0 =

( ∞∑

n=0

|z|2n(2n)!(f(2n)!!)2
/
(n!)2

)−1/2

. (44b)

While if the cavity-field starts from the first excited state,
|ψ(0)

F 〉 = |1〉, then it evolves to the state

∣∣∣ψ(K)
F

〉
≡ |z, 1〉f

= C1

∞∑

n=0

zn

n!

√
(2n+ 1)!f(2n+ 1)!! |2n+ 1〉 ,

(45a)

where by definition f(2n + 1)!! = f(3)f(5)...f(2n −
1)f(2n+1) and C1 is the normalization constant given by

C1 =

( ∞∑

n=0

|z|2n(2n+ 1)!(f(2n+ 1)!!)2
/
(n!)2

)−1/2

.

(45b)
In order to get more clear insight to the nature of the
states (44a) and (45a), we present the following argument.
As stated before, there are two vacua for the operator Ĉ,
namely |0〉 and |1〉. Thus there are two infinite dimensional
sectors, e.g. S0 and S1, corresponding to the states that
are annihilated by Ĉ. By applying the method of Shantha
et al. [37] we can construct the operators B̂+

0 and B̂+
1

such that the commutators [Ĉ, B̂+
0 ] = 1 and [Ĉ, B̂+

1 ] = 1
hold in the sectors S0 and S1, respectively. For the sector
S0, constructed by repeatedly applying Ĉ+ on the ground
state |0〉, we obtain

B̂+
0 =

1
2
(â+)2

1
N̂ + 1

1
f(N̂ + 2)

;

(
[Ĉ, B̂+

0 ] = 1, [B̂0, Ĉ
+] = 1

)
(46)
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and for the sector S1, constructed by repeatedly applying
Ĉ+ on the first excited state |1〉, we obtain

B̂+
1 =

1
2
(â+)2

1
N̂ + 2

1
f(N̂ + 2)

;
(
[Ĉ, B̂+

1 ] = 1, [B̂1, Ĉ
+] = 1

)
. (47)

We now construct the two following displacement oper-
ators corresponding to the algebras [B̂0, Ĉ

+] = 1 and
[B̂1, Ĉ

+] = 1, respectively

D̂
(0)
f (z) = exp(zĈ+ − z∗B̂0)

= exp(−|z|2/2) exp(zĈ+) exp(−z∗B̂0), (48a)

D̂
(1)
f (z) = exp(zĈ+ − z∗B̂1)

= exp(−|z|2/2) exp(zĈ+) exp(−z∗B̂1). (48b)

Applying D̂(0)
f (z)on |0〉 we obtain

exp(zĈ+ − z∗B̂0) |0〉 = e−|z|2/2
∞∑

n=0

zn

n!
(f(N̂)(â+)2)n |0〉

= e−|z|2/2
∞∑

m=0

zn

n!

√
(2n)!f(2n)!! |2n〉

(49)

which is the same as the state |z, 0〉f up to a normalization

constant. On the other hand applying the operator D̂(1)
f (z)

on the state |1〉 yields

exp(zĈ+ − z∗B̂1) |1〉 = e−|z|2/2
∞∑

n=0

zn

n!
(f(N̂)(â+)2)n |1〉

= e−|z|2/2
∞∑

n=0

zn

n!

√
(2n+ 1)!f(2n+ 1)!! |2n+ 1〉 (50)

which is the same as the state |z, 1〉fup to a normalization
constant. Additionally, it is easy to verify that

B̂0 |z, 0〉f = z |z, 0〉f , B̂1 |z, 1〉f = z |z, 1〉f . (51)

So each of the two states |z, 0〉f and |z, 1〉f not only can
be obtained by the application of a displacement type
operator but also as a nonlinear (or f -deformed) anni-
hilation operator eigenstate. In this manner each of these
states can be interpreted as a type of nonlinear coherent
states. Besides, in the limit f(n) = 1 the structures of
the states |z, 0〉f and |z, 1〉f are remindful of the usual
squeezed vacuum and squeezed first excited states [38],
respectively. Accordingly, it is reasonable to consider the
states |z, 0〉f and |z, 1〉f , respectively, as the nonlinear (f -
deformed) squeezed vacuum and nonlinear (f -deformed)
squeezed first excited states [39]. These two states corre-
spond to the algebras [B̂0, Ĉ

+] = 1 and [B̂1, Ĉ
+] = 1,

respectively.

Therefore, if the atom-field interaction is described
by the two-photon intensity-dependent Jaynes-Cummings
Hamiltonian (32), then under the conditions of no losses
and weak atom-field interaction together with a large
enough of polarized injected atoms two other families of
NLCSs can be created.

Let us now consider the two cases in which the atom-
field interaction is governed by the operators (B̂0, B̂

+
0 ) and

(B̂1, B̂
+
1 ), respectively.

In the first case the corresponding interaction Hamil-
tonian is

Ĥ
(m=2)
ID = g

(
B̂0 |a〉 〈b| + |b〉 〈a| B̂+

0

)
. (52)

The operators B̂0, B̂
+
0 and N̂ satisfy the following closed

algebraic relations

[B̂0, B̂
+
0 ] = [[N̂ + 2]](0)f − [[N̂ ]](0)f ,

[N̂, B̂0] = −2B̂0, [N̂ , B̂+
0 ] = 2B̂+

0 , (53a)

together with

B̂0 |n〉 =
√

[[n]](0)f |n− 2〉 ,

B̂+
0 |n〉 =

√
[[n+ 2]](0)f |n+ 2〉 , (53b)

where the symbol [[X ]](0)f stands for
(1/4)(X/(X − 1))(1/f2(X)). By applying exactly
the same procedure as before we find that the micromaser
field, initially in the vacuum state |0〉, after passing a
large number of polarized injected atoms evolves to the
state
∣∣∣ψ(K)

F

〉
≡ |z, 0〉(e)f = Ce

∞∑

n=0

zn

√
(2n)!f(2n)!!

|2n〉 (54a)

with

Ce =

( ∞∑

n=0

|z|2n
/
(2n)!(f(2n)!!)2

)−1/2

(54b)

as the normalization constant. Furthermore, it is easy to
show that the state |z, 0〉(e)f can be constructed either

by the action of the displacement operator D̂(0)′

f (z) =
exp(zB̂+

0 − z∗Ĉ) on the ground state |0〉 or as the eigen-
state of the operator Ĉ with the eigenvalue z.

We now turn to the second case. The corresponding
interaction Hamiltonian reads as

Ĥ
(m=2)
ID = g

(
B̂1 |a〉 〈b| + |b〉 〈a| B̂+

1

)
. (55)

The operators B̂1, B̂
+
1 and N̂ satisfy the following closed

algebraic relations

[B̂1, B̂
+
1 ] = [[N̂ + 2]](1)f − [[N̂ ]](1)f ,

[N̂, B̂1] = −2B̂1, [N̂, B̂+
1 ] = 2B̂+

1 , (56a)
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together with

B̂1 |n〉 =
√

[[n]](1)f |n− 2〉 , B̂+
1 |n〉 =

√
[[n+ 2]](1)f |n+ 2〉,

(56b)
where the symbol [[X ]](1)f stands for
(1/4)((X − 1)/X)(1/f2(X)). This time we find that
the micromaser field, initially prepared in the first excited
state |1〉, after passing a large number of injected atoms
evolves to the state

∣∣∣ψ(K)
F

〉
≡ |z, 1〉(o)

f = Co

∞∑

n=0

zn

√
(2n+1)!f(2n+ 1)!!

|2n+1〉
(57a)

with

Co =

( ∞∑

n=0

|z|2n
/
(2n+ 1)!(f(2n+ 1)!!)2

)−1/2

(57b)

as the normalization constant. In addition, it is found that
the state |z, 1〉(o)

f can be constructed either by the action

of the displacement operator D̂(1)′

f (z) = exp(zB̂+
1 − z∗Ĉ)

on the state |1〉 or as the eigenstate of the operator Ĉ with
the eigenvalue z.

In fact, the states |z, 0〉(e)f and |z, 1〉(o)
f are respectively

the even and odd NLCSs which are defined [39,40] as
the extensions of the notions of usual even and odd co-
herent states. Therefore we have shown the possibility of
the generation of even and odd NLCSs of the radiation
field in a coherently pumped micromaser where the atom-
field interaction is governed by (52) and (55), respectively.
Algebraically, the two states correspond to the algebras
[Ĉ, B̂+

0 ] = 1 and [Ĉ, B̂+
1 ] = 1, respectively.

The normalizability condition leads to the following
restrictions for the values of |z|2 = (Kgτ)2ρaaρbb for the
states |z, 0〉f , |z, 1〉f , |z, 0〉(e)f and |z, 1〉(o)

f ,

|z, 0〉f : |z|2 < lim
m→∞ (m+ 1)

/
(4m+ 2)f2(2m+ 2),

(58a)

|z, 1〉f : |z|2 < lim
m→∞ (m+ 1)

/
(4m+ 6)f2(2m+ 3),

(58b)

|z, 0〉(e)f : |z|2 < lim
m→∞(2m+ 2)(2m+ 1)f2(2m+ 2),

(58c)

|z, 1〉(o)
f : |z|2 < lim

m→∞(2m+ 3)(2m+ 1)f2(2m+ 3).

(58d)

If f(m) decreases (increases) faster thanm−1 (m) for large
m, then in the cases of |z, 0〉f and |z, 1〉f (|z, 0〉(e)f and

|z, 1〉(o)
f ) the range of |z|2 is unrestricted.

In Figures 2a and 2b we plot the photon-number distri-
bution for the states |z, 0〉f and |z, 1〉f respectively, with
gτ = 10−3, K = 104, ρaa = ρbb = 0.5 and for two different
cases f(n) = 1/

√
n+ 1 and f(n) = 1/(n+ 1). (Note that

(a)

(b)

Fig. 2. Photon number distribution for the states |z, 0〉f (a)

and |z, 1〉f (b) with gτ = 10−3, K = 104, ρaa = ρbb = 0.5 and

for two different cases f(n) = 1/
√

n + 1 ( ) and f(n) =
1/(n + 1) ( ).

for the above values of the parameters the states |z, 0〉f=1

and |z, 1〉f=1 are not normalizable.) As it is seen, both the
nonlinear squeezed vacuum and nonlinear squeezed first
excited states have oscillatory occupation number distri-
bution. We also find

〈n〉|z,0〉f=1/
√

n+1
= 48.484; Q|z,0〉f=1/

√
n+1

= 0.0316

(super-Poissonian statistics),

〈n〉|z,0〉f=1/n+1
= 3.352; Q|z,0〉f=1/n+1

= −0.219

(sub-Poissonian statistics),

〈n〉|z,1〉f=1/
√

n+1
= 50.980; Q|z,1〉f=1/

√
n+1

= −0.018

(sub-Poissonian statistics),

〈n〉|z,1〉f=1/n+1
= 4.543; Q|z,1〉f=1/n+1

= −0.453

(sub-Poissonian statistics).

Figures 3a and 3b, respectively, display the photon-
number distribution for the states |z, 0〉(e)f and |z, 1〉(o)

f ,
with the same values of parameters as in Figures 1 and 2,
and for f(n) = 1, f(n) =

√
n+ 1, f(n) = n+ 1. Further-

more, we obtain

〈n〉|z,0〉(e)
f=1

= 2.499; Q|z,0〉(e)
f=1

= −0.5

(sub-Poissonian statistics),
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(a)

(b)

Fig. 3. Photon number distribution for the states |z, 0〉(e)f (a)

and |z, 1〉(o)
f (b) with gτ = 10−3, K = 104, ρaa = ρbb = 0.5

and for three different cases f(n) = 1 ( ) f(n) =
√

n + 1
( ) and f(n) = n + 1 ( ).

〈n〉|z,0〉(e)
f=

√
n+1

= 2.058; Q|z,0〉(e)
f=

√
n+1

= −0.480

(sub-Poissonian statistics),

〈n〉|z,0〉(e)
f=n+1

= 0.478; Q|z,0〉(e)
f=n+1

= −0.370

(sub-Poissonian statistics),

〈n〉|z,1〉(o)
f=1

= 2; Q|z,1〉(o)
f=1

= −0.375

(sub-Poissonian statistics),

〈n〉|z,1〉(o)
f=

√
n+1

= 1.570; Q|z,1〉(o)
f=

√
n+1

= −0.340

(sub-Poissonian statistics),

〈n〉|z,1〉(o)
f=n+1

= 0.150; Q|z,1〉(o)
f=n+1

= −0.100

(sub-Poissonian statistics).

In the end, it is necessary to remark two important
points. First, we note that the density matrix elements
for the micromaser field states under consideration de-
pend on the number of injected atoms, i.e., ρ(K)

F (n, n′) =
〈n||Ψ〉(K)

F
(K)
F 〈Ψ ||n′〉 ∝ Kn+n′

. In particular, for n = n′

we have ρ(K)
F (n, n) ∝ K2n which is the hallmark of a co-

operative process and is similar to the superradiance of
a collective Dicke system [41]. Such dependence is due

to the initial atomic coherence and indicates that emis-
sion of separately injected single atoms initially prepared
in the same coherent superposition state is a cooperative
process. As the second point, it should be noted that the
micromaser field is unfortunately inaccessible for a direct
measurement by a homodyning technique developed for
optical fields. Therefore a usual way of its detection and
measurement is to read a level statistics of a probe atom.
By using this idea it has been recently presented [42] a
new method for the determination of the intra-cavity field
state, based on an operational definition of the Wigner
function. We believe that this method can be employed,
in principle, as an efficient technique to measure the prop-
erties of the NLCSs of the micromaser field generated fol-
lowing the procedure discussed in the present paper.

4 Summary

In this paper we have made an effort to solve a complicated
dynamical problem characterized by a quite general non-
linear atom-field interaction Hamiltonian which naturally
lends itself to the use of NLCSs. Our main work is investi-
gating how to produce generic NLCSs (f -deformed CSs) in
a lossless micromaser cavity which is pumped by a stream
of velocity-selected two-level atoms prepared in a coher-
ent superposition of the upper and lower states. Consid-
ering the intensity-dependent interaction, we have stud-
ied the quantum evolution of the cavity-field coupled to
the polarized injected atoms through one as well as two-
photon transitions. In the case of one-photon transitions,
two different families of NLCSs can be generated if the
cavity-field starts from the vacuum state. These families
are associated with two dual deformed boson oscillator
algebras. On the other hand, we have found that in the
case of two-photon transitions four different families of
NLCSs including nonlinear squeezed vacuum state, non-
linear squeezed first excited state, nonlinear even coher-
ent state and nonlinear odd coherent state, can be gener-
ated. We have shown that the nonlinear squeezed vacuum
state and nonlinear squeezed first excited state can be
algebraically interpreted as the dual families of the even
nonlinear coherent state and odd nonlinear coherent state,
respectively.

The quantum statistical properties of the NLCSs we
have obtained in our treatment depend on the form of
nonlinearity function f(n) as well as some physical pa-
rameters, i.e., g, τ and K. For example, it is found that
they may demonstrate sub-Poissonian statistics so they
can be regarded as non-classical states. Moreover, the den-
sity matrix elements of the states depend on the number
of injected atoms. This dependence displays a feature of a
cooperative process that is similar to superradiance.

Finally, we again stress that the presence of initial
atomic coherence, weakness of atom-field interaction and
largeness of passed atoms through the lossless cavity are
some of the essential assumptions in our treatment.
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